NTPC Indian Power Stations
Operation & Maintenance
Conference
Sustainable Growth Strategies for
Fuel and Efficiency
New Delhi, India February 2013

U.S. High Efficiency Strategies
for Clean Coal Systems

Robert M. Purgert
President

www.energyinohio.org
U.S. Program for Advanced Ultrasupercritical (A-USC) Coal Fired Power Plants

R. Purgert, Energy Industries of Ohio
J. Shingledecker
Senior Project Manager, EPRI Fossil Materials & Repair Program

P. Rawls, National Energy Technology Laboratory
S. Smith, Ohio Coal Development Office

NTPC-Indian Power Stations O&M Conference
Sustainable Growth Strategies for Fuel and Efficiency

Federal – State – National Laboratory
Non Profit – For Profit
Cost Sharing Consortium
Increasing Steam Temperature and Pressure Increases Thermal Efficiency and Decreases Emissions

Note: HHV Basis

“Least Regret” Strategy for CO₂ Reduction
Materials Limit the Current Technology

Average Temperature for Rupture in 100,000 hours (°F)

9-12Cr Creep-Strength Enhanced Ferritic Steels (Gr. 91, 92, 122)

Nickel-Based Alloys

Inconel 740

Std. 617

Haynes 282

Age Hardenable = A-USC

760°C (1400°F)

CCA617

9-12Cr Creep-Strength USCs

620°C (1150°F)

Solid Soln’ = A-USC

~700°C (1300°F)

Haynes 230

Steels = USCS

Minimum Desired Strength at Application Temperature

© 2011 Electric Power Research Institute, Inc. All rights reserved.
‘Aggressive’ goals for increased steam turbine temperatures are in-line with gas turbine improvements
Primary Technical Goals of US A-USC Materials Programs

• Materials Technology Evaluation
 • Focus on *nickel-based alloys*
 • Development of fabrication and joining technology for new alloys

• Unique Conditions for US Program Considerations
 • Higher-temperatures than European Program (760°C versus 700°C) means *additional alloys* are being evaluated
 • Corrosion resistance for *US coals*
 • Data for *ASME code* acceptance of new materials
 • Phase II Boiler work includes *Oxycombustion*
Why 1400°F (760°C)?
Best Approach to Achieving Good Economics

- **Materials** will limit the maximum achievable temperature
- **Economics** will dictate the optimum temperature
- For Example: a material suitable for 1400°F will have economic advantages at 1300°F over other materials because components will have *thinner walls*
 - Lower weight = lower material cost
 - Thinner sections = easier to weld/erect
 - Reduced thermal gradients = improved cycling

If you have to pay for nickel, make the most of it!
Develop the materials technology to fabricate and operate an A-USC steam boiler with steam parameters up to 1400°F (760°C)
A-USC Steam Turbine Program: Phase I (complete)

- Scoping Studies – Downselect Materials
- Key Issues
 - Welded rotors materials
 - Non-welded rotor materials
 - Air Casting
 - Erosion resistance
 - Oxidation resistance
DOE/OCDO A-USC Steam Turbine Consortium Phase II

• Selected Materials from Phase I
• Tasks
 – Rotor/Disc Testing (near full-size forgings)
 – Blade/Airfoil Alloy Testing
 – Valve Internals Alloy Testing
 – Rotor Alloy Welding and Characterization
 – Cast Casing Alloy Testing
 – Casing Welding and Repair
Approach: Address Key Technical Challenges for Materials & Components

• A-USC Boiler
 – Material selection based on strength & stability
 – Fireside corrosion
 – Weldability
 – Fabrication

• A-USC Turbine
 – Materials selection based on short & long-term strength, stability, fatigue, and processing characteristics
 – Erosion and oxidation of blade materials and coatings
 – Castings
 – Welded rotors
Boiler materials selection based on strength and stability

- Codes & Standards Interface
- Long-term weldment strength
- 40,000 hr + testing

- Long-term strength
- Fabrication Effects
- Weldment behavior
- Testing for code case

- Materials Selection
- Procurement of Materials (7 alloys)

- Initial creep testing (10,000hr)
- Microstructure & Aging Studies

- Vendor Discussions/Literature Search

© 2011 Electric Power Research Institute, Inc. All rights reserved.
Materials Selection for A-USC Alloys (Boiler Superheater/Reheater Tubing Strength)

A-USC Technology Requires Nickel-Based Alloys

Today’s Technology Limited by Steels
Successes

• Materials have been identified with the requisite strength for an A-USC boiler with steam temperature up to 1400°F (760°F)
• Testing has eliminated certain alloys
• A code case request has been submitted based on the data produced by the program for Inconel 740
• Some very long-term tests continue to add confidence to life predictions
• Testing of a new material (Haynes 282) has started
Fireside Corrosion
3 phase approach

• Air cooled probes
 • Alloys and coatings selected from lab trials
 • 3 host site with 2 probes each

• Laboratory Studies
 (3 Coals, 3 WW Temps, 3 SH/RH Temps)
 • 2nd Steam cooled loop installation, operation & analysis
 • Oxycombustion effects

• Steam-cooled loops
 • Most realistic environment
 • High sulfur coal (aggressive)
Successes: Air-cooled probes

Cleaned surface of an air-cooled probe exposed for 2 years in a coal-fired boiler at A-USC temperatures

Inconel 740 shows lower wastage than a high chromium cladding (50/50), a 23% Cr wrought alloy (HR6W), and weld overlays (WO)
Successes (cont.)

• An extensive laboratory test program has been completed on a myriad of alloys, coatings, and weld overlays to aid in materials selection for fireside corrosion.

• Six air-cooled probes have been deployed and tested in three boiler burning different fuels.

• The air-cooled probes showed Inconel 740 to perform as well or better than any other monolithic material and even outperform weld overlays in some instances.

• A steam-cooled loop was fabricated and operated in a boiler above 1300°F/700°C (steam temperature) providing realistic data on a select number of alloys and coating. Again Inconel 740 performed very well despite the highly corrosive conditions.

• A second steam loop is under construction.

Overall, the corrosion probes and loops have shown that alloys can withstand the corrosion environment of an A-USC boiler with successive tests adding confidence for material selection.
Weldability

• **Welding**
 - 7 alloys, multiple processes, thin & thick section
 - Over 20 combinations qualified
 - Some processes eliminated
 - New learning: modified weld metal chemistries, different fluxes, process selection, etc.

- Thick section success: H230, CCA617
- Save12 R&D
- Initial welding (cracking)
- EWI Study
- Creep Testing
- Special Metals R&D
- New Heats Produced
- DMW w/P87
- Final Optimized Chemistry
- Successful Qualification
- Testing Modified Heats
- Repair Welding
- 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

- Additional mechanical property testing of welds
- Report on dissimilar metal welds
- Repair welding

- **Inconel 740**
 - Tube-to-tube successfully welded
 - For thick section an extensive welding development program was needed
 - Process is now repeatable
Successes

Original Inconel 740 weld trials (Liquation cracking in heat affected zone)

Today: Repeatable 3” (75mm) thick Inconel 740 welds without cracking

Consortium research has demonstrated revolutionary progress in nickel-based alloy welding
Fabrication

- **Evaluation of fabrication processes for new alloys**
 - Bending, machining, swaging, forming
 - Cold work and recrystallization
 - Testing of tube bends to evaluate cold-work limits

- **Cold-work effects on creep properties and recrystallization**

- Demonstration articles were produced to showing multiple processes being put together

Pressurized tube bend tests and analysis
Successes

• No significant changes to fabrication techniques were required
• Initial R&D was used to make changes to ASME Section I Table PG-19 for H230 & 617
• Initial tests on Inconel 740 led to additional phase 2 work (ongoing) on cold-work effects on creep (how the bends will perform in service)
Materials selection for turbine rotors, discs, and blades

- **Phase 1 – Initial material selection**
 - Extensive literature search, thermodynamic simulation, review of boiler work
 - Selected 5 alloys for mechanical property study including multiple heat-treatment conditions
 - Standard product forms
 - Mechanical properties: tensile, creep, fatigue
 - Microstructural development

- **Phase 2 – testing of best alloys**
 - Select top candidate alloy for each component
 - Extensive testing including: hold-time effects and notch sensitivity
 - Testing for longer times of larger forgings

- Additional steam-turbine specific testing
- Longer-term data
- Properties of large forgings

Alloy Selection & Procurement

Testing & Analysis

Program Start

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Initiate longer-term testing
Initial Material Selection for A-USC Turbine: Behavior of HP/IP Rotor Alloys

Fatigue Behavior

Creep-Rupture

Best Candidates:

→ Nimonic 105
→ Haynes 282
→ Waspaloy
Successes: Large Forgings Research Requires an Understanding of Microstructure & Properties as a Function of Heat-Treatment

Solution Annealed

PA = SA + 8h @ 790°C

OV = PA + 250h @ 775°C

Studies on Haynes 282:

• Creep-rupture strength was relatively insensitive to heat-treatment
• Detailed microstructural studies on gamma prime precipitates after heat-treatment and creep were conducted
• Both mechanical property data and microstructure studies suggest the alloy has a large processing window making it attractive for steam turbine forgings

Erosion and Oxidation of Blade Materials and Coatings

- Oxidation studies
 - Oxidation rates/kinetics
 - Scale morphology
 - Internal penetration vs. oxide thickness
 - Bare metals (substrates) and coatings

- Erosion Testing
 - High-temperature erosion tests were conducted at 1400°F (760°C)
 - Coating and substrates
Successes

- Oxidation rates (both internal penetration and mass gain) of candidate bare metal substrates were acceptable based on laboratory studies.
- 14 candidate erosion resistant coatings were identified for high-temperature erosion testing and steam oxidation testing.
 - Erosion testing identified four coatings with best performance.
 - Oxidation testing showed unacceptable rates for some coatings including the best erosion performing coating.
- Coating T400C (Tribaloy) performed well in both tests suggesting its use for blading protection.
Castings

- **Phase 1 – National laboratory study**
 - Trial melts made of candidate wrought alloys
 - Simulated slow cooling for large casting
 - Developed new heat-treatment cycles
 - Screening creep and tensile tests including orientation effects
 - Microstructure

- **Phase 2 – testing of best alloys**
 - Select top two candidate alloy castings
 - Produce larger castings
 - Mechanical property testing
 - Weld repair of castings

- Production of larger casting
- Longer-term testing of larger castings
- Weld repair of castings
Successes

- A casting sub-team of OEM and National Laboratories (ORNL & NETL) was formed to address potential issues with nickel-based casing/shells
- Seven trial alloys were cast
- An innovative homogenization heat-treatment cycle was developed
- Mechanical property testing identified the best performing alloys
- Some alloys were eliminated due to lower strength or ductility compared to the wrought alloy counterpart
- Haynes 282, 263, and N105 were judged the best alloys for casting and castability trials were performed
- Based on this work, the phase 2 work on castings has a good starting point for development of larger castings
Welded rotor evaluation

- **Phase 1 – Welded rotor concept**
 - Produce welded joints at desired thickness
 - Heavy section 263-617-Steel
 - Seal weld between nickel based alloys
 - Inspection study
 - Property testing
 - Aging and toughness studies to simulate service exposure

- **Phase 2 – welded rotor**
 - Large ring weld in design thickness and diameter (2 welds planned)
 - Weld inspection
 - Mechanical property and aging evaluation

© 2011 Electric Power Research Institute, Inc. All rights reserved.
Successes

- Successfully produced a thick-section 263-617-Ferritic Steel joint concept using traditional welding techniques.
 - Joint toughness was acceptable after aging (simulated service exposure)
- A second welded rotor configuration was evaluated for Haynes 282 to Udimet 720Li.
 - Welding development was successful and heat-treatment studies showed no evidence of strain age cracking after welding
 - Non destructive evaluation capability of joint was verified
A-USC R&D

- Current Boiler & Turbine Materials R&D
 - Effect of oxycombustion on materials
 - Improved weld/weldment performance
 - Code approval of new alloys
 - Long-term high-temperature material property databases
 - Production of larger forgings
 - Casting R&D for nickel-based alloys

- Path Forward
 - Supplier Development for full-size forgings, extrusions, and castings
 - Test facility → Demo Plant
Comparative Benefits from Program: Piping Sizes for Two A-USC Conditions

Main Steam
5000psi (34.5MPa)
9.8” (248mm) I.D.

Hot Reheat
1060psi (7.3MPa)
18.4” (467mm) I.D.

1300°F/1300°F (700°C/700°C)
1350°F/1400°F (732°C/760°C)

4” (100mm)