Analysis of Low Velocity Dense Phase Pneumatic Conveying System to Extend System Conveying Capability

Dr Kenneth Williams
Research and Development Manager
TUNRA Bulk Solids
in association with
The Centre for Bulk Solids & Particulate Technologies
The University of Newcastle
CONTENTS

- 1. Introduction to dense phase pneumatic conveying
- 2. Flyash Pneumatic Conveying Systems
 - Standard pipe
 - Bypass Pipe
- 3. Onsite System Analysis and Improvement
- 4. Conclusions
MODES OF PNEUMATIC CONVEYING

Moving bed
Fluidised dense phase
Dune flow

Design Point
Under Performance

Further optimisation

Lines of constant m_a

Pressure
Minimum Curve

Decreasing air mass flow rate

Direction of material flow

ΔP (Pa)

m_a (kg/s)
Bypass Pneumatic Conveying System

(a) schematic diagram

(b) bypass pipe

(c) pressure transducer taps arrangement
Test material

<table>
<thead>
<tr>
<th>Material</th>
<th>d_p, µm</th>
<th>ρ_p, kg/m3</th>
<th>ρ_b, kg/m3</th>
<th>P_f, $\times 10^{-7}$m2/(Pa·s)</th>
<th>v_{mf}, mm/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly ash</td>
<td>14.65</td>
<td>2093</td>
<td>775</td>
<td>6.55</td>
<td>84.7</td>
</tr>
</tbody>
</table>
High speed camera visualization

(a) bypass flutes position

(b) moving bed

(c) Dune
Specific energy

\[
\text{Specific Energy} = 2RT \frac{M_a}{M_s} \ln \left(\frac{P_1}{P_2} \right)
\]
Specific energy for fly ash

Specific energy, kJ/kg

Air mass flow rate, kg/s

- Conventional pipe
- Bypass pipe
Case Study
Ash Disposal - Positive pressure blow tank system

• System Performance
 • Is it achieving design capacity
 • Is there opportunity to improve capacity using existing system components

• Analyse existing system:
 • Explore optimisation of conveying cycle
 • Investigate opportunities to increase capacity through:
 • Air supply management
 • Feeding techniques

• Systematically Implement improvement opportunities
Case Study: Improvement to existing flyash system
Power Station Details

• Built 1957 – 4 x 30MW units
• 1976 – upgrade to 2 x 500 MW units
• Ash Handling System:
 • ESP Collection
 • Positive Pressure Blow-tanks – 8 x 1m³
 • 500 m conveying length
 • 5” (250 mm) – 6” (300mm) diameter pipe
Case Study: Improvement to existing flyash system
Pipeline components – Straights and bends
Discharge
Analysis of current system: Conveying cycle pressure

<table>
<thead>
<tr>
<th>Pressure number</th>
<th>Length from start of pipeline (m)</th>
<th>Location from bend (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1.0</td>
<td>1.0 m after blowtank</td>
</tr>
<tr>
<td>T2</td>
<td>4.4</td>
<td>3.4 m after blowtank</td>
</tr>
<tr>
<td>T3</td>
<td>7.4</td>
<td>1 m before LR bend</td>
</tr>
<tr>
<td>T4</td>
<td>11.6</td>
<td>middle of LR bend</td>
</tr>
<tr>
<td>T5</td>
<td>13.6</td>
<td>1 m after LR bend</td>
</tr>
<tr>
<td>T6</td>
<td>68.6</td>
<td>1 m before T bend</td>
</tr>
<tr>
<td>T7</td>
<td>70.9</td>
<td>1 m after T bend</td>
</tr>
</tbody>
</table>
Analysis of current system: Conveying cycle pressure

Blowtank conveying cycle

Estimated time that 90-95% of flyash is removed
Load cell installation
System Analysis: 20 minutes
Blow tank discharge – fill cycle

- Blow tank emptying cycle
- Slow fill region
- Fast fill region
- Blow tank pressure venting region
- Blow tank line valve closed
- Blow tank line valve opened

[Chart showing time, pressure, and load changes during blow tank discharge and fill cycle]
Optimisation – Flow rates

Flyash Flow Rates

<table>
<thead>
<tr>
<th>Region</th>
<th>[kg/s]</th>
<th>[t/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blowtank Refill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow refill</td>
<td>1.14</td>
<td>4.09</td>
</tr>
<tr>
<td>Fast refill</td>
<td>27.1</td>
<td>97.6</td>
</tr>
<tr>
<td>Blowtank Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full 100% of discharge</td>
<td>7.67</td>
<td>27.6</td>
</tr>
<tr>
<td>First 90% of discharge</td>
<td>13.13</td>
<td>47.3</td>
</tr>
<tr>
<td>Last 10% of discharge</td>
<td>1.62</td>
<td>5.82</td>
</tr>
</tbody>
</table>
Optimisation – Flow rates

average discharge = 27.6 t/hr

average discharge = 5.82 t/hr

average discharge = 47.3 t/hr

first 90% of material discharged

last 10% of material discharged

90% discharge weight

start Blow tank weight

final Blow tank weight

T1 [kPa]

load [kg]
Improving initial pressurisation

• It is clear from the analysis that the current flyash material has a conveying rate below 270 kPa which is well below the current pre-pressurisation setting of 400 kPa. It is recommended that the pre-pressurisation is reduced to 300 kPa in order to save energy and also to provide a faster pre-pressurisation time of approximately 5 seconds.
• This recommendation assumes that the grade of flyash will not vary significantly.
Improving tonnage

• changeover time between blow tank discharge into the main pipeline is 10 s, which appears to include the pre-pressurisation time.
• total conveying time was 73 seconds.
 • average cycle time of approximately 83 seconds (or 43 cycles per hour).
 • tonnage rate for the 100% conveying time was 27 t/hr over a 73 second period.
 • effective tonnage rate will be 24 t/hr.
• The 90% discharge rate occurs over a 41 seconds
 • flow rate of 47 t/hr.
Improving tonnage

• For the 90% discharge rate and taking into account the extra 10 s for cycle changes
 • a new cycle time of 51 seconds (or 70 cycles per hour)
 • provides an effective discharge rate of 38 t/hr.
 • This effective discharge rate increases output capacity by 58%.

• Lastly, it is important to note:
 • from a life cycle and maintenance issue, you will also have a 58% increase in the operation of the valves over the same time period.
 • A larger blow tank size would reduce valve cycle rates.
Final improvement 2011-2102
Original Control of feed air into blow-tank

40% air bypass tank into main line

60% air to fluidise ash
Final improvement 2011-2012
Improved Control of feed air into blow-tank

90% air into top of tank

5% air bypass tank into main line

5% air to fluidise ash

Increased effective tonnages 40 – 45 t/hr
(originally 27 t/hr)
Summary

• System Design
 • Determine ash properties
 • Define minimum transport conditions

• Post installation - Analyse existing system:
 • Explore optimisation of conveying cycle
 • Investigate opportunities to increase capacity through:
 • Air supply management
 • Feeding techniques

• Systematically Implement improvement opportunities
QUESTIONS?