NTPC O&M Conference 2013

Performance and Optimization of Water Utilisation Increase of Existing Power Plants

Speaker Name; Tufani Ram
13-14/02/2013
Introduction

Water is a vital Resource

- Water is a vital commodity for the population and being utilised substantially high quantity possible in the Power Sector as it is one of the largest consumers

- **Performance increase** and options to **reduce water consumption** in existing power plants will be introduced
Agenda

1st topic
Integrated Performance Improvement

2nd topic
Water Utilisation Increase
Example Power Station “Arnot”

- Arnot is a coal fired power plant that was originally rated 6 x 350MWe owned by ESKOM
- Located in South Africa in the Mpumalanga Province

ESKOM Needs:

- Modernisation and life extension for all 6 units
- Capacity increase
 - From 350 MWe → 400MWe
- Minimal outage time and Cost
ECO|RAM™: analysis methodology covering Plant design, operation & maintenance

- **ECO|RAM™** draws from both Customer and ALSTOM experience to ensure as many improvement ideas as possible are considered.
- Strength of the methodology: ability to quickly assess and select realistic ideas to be investigated further
- Comprehensive analysis and ranking provides a shortlist of Viable Potentials for the Customer to consider for investment
- The co-operative approach of **ECO|RAM™** also ensures that the plant owner is aware of the direction of the investigation from start to finish.

A systems-level approach covering the Total Plant Optimization
Arnot Assessment

ESKOM GOALS

- Determine maximum plant capacity increase achievable with:
 - No Turbine Modifications
 - Minor Turbine Modifications
 - Major Turbine Modifications
- Determine required technical measures for each stage

Assessment Workflow

Customer/Operator
- Operation
- Maintenance
- Reliability / Availability

Site Discussion

ECO|RAM™ Questionnaire combining technical and economic drivers

ALSTOM Power
- Technology
- Service
- International Experience

Cost Analysis
- Cost of Electricity
 - Variable
 - Fixed
 - Primary
 - Secondary
 - Operation

Final Report

Performance and Water Utilisation Increase -- NTPC O&M Conference 2013

© ALSTOM 2011. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Arnot Implementation

• Implementation

Assessment
Arnot Boiler Scope

- Complete replacement of firing components
- New Secondary & Offset Air Nozzles with Low NOx design features
- Regenerative Airheater Upgrade
Arnot Boiler Scope

- Superheater & Reheater Material Upgrade
- High Performance Classifier
- Steam Drum Internals
Arnot Turbine Scope

• HP cylinder
 – Inner Casing
 – Bladed Rotor

• IP Cylinder
 – Inner Casing
 – Bladed Rotor
 – Inlet & Extraction Connections
Arnot Plant Retrofit Results

- Steam-water cycle optimisation maximising
- Unit performance guarantees
- Short time scales with quick MWe to the grid system
- Extending plant lifetime by 20 years in an economically and environmentally viable manner (NOx reduction)
- Minimal outage time and cost

*weighted nominal turbine generator output 406-408MW

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output</td>
<td>350 MW</td>
<td>408 MW*</td>
</tr>
</tbody>
</table>
Agenda

1st topic Integrated Performance Improvement

2nd topic Water Utilisation Increase
Water Utilisation Increase

Water consumption in an evaporative cooled power plant

- **70-90%** evaporative and blow down losses
- Blow down water is a continuous extraction from the cooling water to maintain the concentration of TDS (Total Dissolved Solids)
Main Water Consumer

Reduce the evaporative losses of existing wet cooling system

- Evaporative losses are nearly linear dependent on the thermal load on the cooling water

- Options:
 - 100% dry cooling
 - Power output reduction
 - Hybrid cooling

3.45 m³/MWh

Cooling tower evaporative and blow down losses
100% Dry Cooling

- Fully dry cooled power plants are common and proven technology
- Large scale air cooled condenser units like Matimba (6 x 665MWe) in South Africa
- **100% dry cooling conversion is in most cases not viable as a retrofit measure**
Hybrid Cooling

Hybrid Cooling for existing power plants

- Hybrid Cooling with Air Cooled Condenser (ACC)
 - Steam extraction with pressure offset to main condenser
 - Modified inner and outer casing of the LP turbine(s) for large steam extractions
 - New LP rotor with state of the art blading
 - Small space requirements for an ACC (high condensation temperature)

Condensation Pressure: 0.03-0.1 bara

Condensation Pressure: 0.35-0.75 bara
Hybrid Cooling Concept

New LP turbine with Hybrid Cooling Interface and state of the art steam path

Hybrid Cooling Interface with steam ducts

Control Valve

Air Cooled Condenser p=0,35 - 0,7 mbar

Existing surface condenser with reduced backpressure due to reduced heat load
Sankey Diagram of the simple Rankine Cycle

Steam power plant with 210 MWe power output

- Chemical Energy In Fuel
- Thermal Energy in Flue Gas
- Thermal Energy in Cooling Water
- Electrical Energy
- To Grid 210MWe
- To Condenser 250 MWth
- To Stack – 88MWth

3% to Auxiliary Power
NOTE: Aux Power = ~7% of Electric Power

Performance and Water Utilisation Increase – NTPC O&M Conference 2013
Sankey Diagram of the simple Rankine Cycle

Option: Load Reduction

Chemical Energy in Fuel

Electrical Energy

Thermal Energy in Cooling Water

Thermal Energy Flue Gas

To Stack – 62MWth

To Grid
147MWe

3% to Auxiliary Power
NOTE: Aux Power = ~7% of Electric Power

3% to Auxiliary Power
NOTE: Aux Power = ~7% of Electric Power

Performance and Water Utilisation Increase – NTPC O&M Conference 2013

© ALSTOM 2011. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Sankey Diagram of the simple Rankine Cycle

Option: 30% Hybrid Cooling Share

Electrical Energy

Chemical Energy
In Fuel

Thermal Energy
in Cooling Water

Hybrid Cooling*

Thermal Energy Flue Gas

To Condenser
175 MWth

To Grid
204 MWe

To Stack – 88 MWth

*Assuming 30% Hybrid Cooling Share

3% to Auxiliary Power
NOTE: Aux Power = ~7% of Electric Power

NOTE: Aux Power = ~7% of Electric Power

Performance and Water Utilisation Increase – NTPC O&M Conference 2013

© ALSTOM 2011. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Impact of Hybrid Cooling

Original

Hybrid Cooling
Assuming 30% Hybrid Cooling share

Performance and Water Utilisation Increase – NTPC O&M Conference 2013

© ALSTOM 2011. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Benefits of Hybrid Cooling

- Hybrid Cooling is a Retrofit Solution for existing power plants
- 20-45% reduced water consumption possible
- Flexible heat sink
- Improved availability
- Low efficiency loss
 - Off loading the existing condenser leads to improved LP turbine exhaust pressure
- Applicable for mechanical or natural draft recirculation cooling systems and once through cooled power plants
Summary

• Combining Plant Assessments and Plant Retrofit, is an effective measure for successful and cost effective performance increase and lifetime extension

• Hybrid Cooling is a Retrofit option for existing steam power plants to reduce water consumption and maintain power output
Thank You All