Fuel Flexible Gas Turbines for Sustainable Power Generation

Dr Suresh M V J J • Regional Lead Application Engineer, GE India (Bengaluru)
Ranjith Malapaty • Engineering Technical Leader, GE Power & Water (Hyderabad)

Indian Power Stations O & M Conference • February 13-14, 2013 • NTPC, India

GE Proprietary Information - The information contained in this document is General Electric Company (GE) proprietary information. It is the property of GE and shall not be used, disclosed to others or reproduced without the express written consent of GE, including, but without limitation, it is not to be used in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export or re-export is prohibited.
Outline

• Introduction
• Fuel Flexibility Options
 ✓ Liquefied Natural Gas (LNG)
 ✓ Syngas
 ✓ Oils
• OpFlex™ Model Based Controls
• Summary
Introduction
Hydrocarbon consumption 2011
~85% of primary energy

Hydrocarbon consumption, 2011
Million Tonnes Oil Equivalent

10,522 Total

North America
China
Europe
Middle East
Eurasia
OECD Asia
India
Other Non-OECD
Latin America
ASEAN
Other OECD
Africa

Source
Coal
Gas
Oil

Million Tonnes Oil Equivalent, 2011
Industry drivers for fuel flexible solutions:

- Diversified power generation mix (in terms of both fuel sources & suppliers)
- Greater energy independence/autonomy
- Efficient use of energy/emissions

Fuels experience ... broad range
LNG & Natural gas variation
LNG & Natural gas variation

Gas composition variation will increase as more LNG is injected into pipelines

Variation poses gas turbine operability challenges

- Auto-ignition
- Flashback
- Combustion dynamics
- Combustor lean-blowout
- Emissions compliance (NO_x, CO)

Addressed by OpFlex* offerings

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (N2) [%]</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>Carbon-Dioxide (CO2) [%]</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>Methane (C1) [%]</td>
<td>85</td>
<td>96</td>
</tr>
<tr>
<td>Ethane (C2) [%]</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Propane (C3) [%]</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Iso-Butane (IC4) [%]</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>n-Butane (NC4) [%]</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Iso-Pentane (IC5) [%]</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>n-Pentane (NC5) [%]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LHV [BTU/scf]</td>
<td>1045</td>
<td>1170</td>
</tr>
</tbody>
</table>

*Trademark of General Electric Company.
Syngas
Syngas production in an IGCC plant

Gasification

Partial oxidation

Solid feedstock is gasfied

H₂ & CO (syngas)

Gas clean-up

Gas Turbine

MNQC Combustor Diluent (N₂, Steam)
Syngas to hydrogen (CO$_2$ separation)

1. **Gasification**
 - Partial oxidation
 - Solid feedstock is gasfied

2. **“Shift” Process**
 - Steam/Syngas Reactor
 - Catalyst based Water-Gas converts CO to CO$_2$

3. **CO$_2$ Capture + Compression**
 - Acid Gas Reactor system removes CO$_2$, which is compressed and piped off-site

4. **Gas Turbine**
 - MNQC Combustor
 - Diluent (N$_2$, Steam)

- **Partial oxidation**
 - CO + H$_2$O \rightarrow CO$_2$ + H$_2$ (H$_2$ rich syngas)

- **EOR or Storage**
 - H$_2$ & CO (syngas)
Syngas turbine controls and accessories

- Inlet filter house
- Inlet duct & plenum
- Gas fuel module
- Water injection skid
- Exhaust system
- Static starter
- IGCC Controls with added I/O
- Controls hardware and software
- Accessory module
- Liquid fuel and atomizing air
- Syngas fuel skid with N2 purge
- Optional air extraction skid*
- Enclosure modifications:
 - Piping for syngas, diluent, etc.
 - Explosion proofing
 - Hazardous gas detection
 - Fire protection
- N2/Steam injection skid*

*Fuel and diluent skids/modules may need to be customized for specific fuel/plant configurations
MNQC for E/F Syngas Turbines

- MNQC (Multi Nozzle Quiet Combustor) – Diffusion (Not DLN)
- Same combustor architecture for 6FA, 7EA, 9E, 7F Syngas, and 9F Syngas turbines
- End cover/fuel nozzle assembly nearly identical, except for minor scaling
- Combustor liner and cap designs similar, scaled to different operating conditions
- Diluent N₂ or Steam or a blend
- Air extraction available for integration with process
Oils
Biofuels field tests ... ready when opportunity is right

Biodiesel
• Fuel used met ASTM D-6751 & GE liquid fuel specification
• Operated from start-up to full power on a range of fuel mixtures
• Confirmed that NO\(_x\) emissions were comparable to turbine running on distillate fuel

Ethanol
• Successful test performed on a 6B Gas Turbine in 2008
• Commonalities with naphtha: high volatility, poor lubricity, miscible

6B Gas Turbine—standard combustor
Fuel: B20 – B100
Fuel: Ethanol

7EA Gas Turbine—DLN1 combustor
Fuel: B20 – B100

LM6000* SAC
Fuel: B100

* LM6000 is a trademark of General Electric Company.
Crudes ... decreasing OpEx; increasing availability

Shift to heavier oils and sour gas
• Field reserves and refinery ends
• Leads to corrosion, ash deposition and emissions concerns
• Impacts CapEx (Capital Expenditure) and OpEx (Operational Expenditure)

Technical solutions ... Heavy fuel oil (HFO) availability package
• 4 key attributes
 – Smart cool down
 – Automated water wash
 – Model based control
 – Open S1 nozzle
• Decreases offline time to perform water wash (from 48 to <16 hours)
• Reduce degradation and maintain Tfire ...
 25% reduction in output degradation rate
• More power, better efficiency

Sulfur concerns:
• Acidity of oceans environmental standards

Heavy Metal concerns:
• Preventing vanadium corrosion
• Efficiency/maintenance impact

MBC firing temperature control

Maintain base load Tfire

Recoverable performance zone

Traditional Tfire

Operating time between turbine washes
OpFlex™ Model Based Controls
OpFlex™ Model Based Controls Overview

Today: Indirect (Tx Space) Boundary Control

- Approximate Boundary Protection
 (Calculated Off-line to Accommodate Worst-Case Condition)
- No Explicit Accommodation Of Machine Deterioration
 (New & Clean / Mean Machine Assumption)
- Coupled Effectors Prohibit Optimization
 (Part-Load Exhaust Temperature & Fuel Splits)

Model Based Controls : Direct (Boundary Space) Boundary Control

- Direct Boundary Protection
 (In The Boundaries Physical Space)
- Accommodation Of Machine Deterioration
 (Adaptive Model Ensures Accurate Surrogates)
- Implicitly De-Coupled Effectors
 (Automatic Performance Optimization)
- Robust / Flexible / Expandable
 (Additional Boundaries / Loops)
- Proven GT Control Technology
Model-Reference Adaptive Control

Boundary Scheduling Logic

Commands

Boundary Targets

Errors

Model-Based Control Structure

(Loop Selection Logic)

Effectors

Gas Turbine

Combustion Dynamics Measurement

TF Tuning

Estimated Boundary Levels

Surrogates

ARES - Parameter Estimation

Engine Model

Boundary Transfer Functions

© 2013, General Electric Company. Proprietary Information. All Rights Reserved.
Fuel Flexibility with OpFlex™ MBC

Model-Based Control

Prioritized Dynamics Control
1st: Fuel Splits
2nd: Fuel Temperature
3rd: Load Reduction

Combustor Capability Unleashed

Wide Wobbe

Fuel Flexibility
(Simulated +/- 10% WI over 30sec)

Wide-Wobbe Capability

GEI-41040
±5\%
7FA

±20\%
9FA

Modified Wobbe Index (MWI)

© 2013, General Electric Company. Proprietary Information. All Rights Reserved.
Automated DLN Tuning with OpFlex™ MBC

- LNG terminal less than 200 km from 207FA combined-cycle power plant
- LNG storage tank originally purged with CO₂ ... not all CO₂ removed before LNG was introduced to tank
- CO₂ / LNG entered pipeline and reached site at 11:24 am
- Initial Modified Wobbe Index (MWI) value decreased 5.6% due to presence of CO₂ in fuel
- MWI increased 8.7% due to LNG
- Maximum rate of change in MWI reached 9.5%/minute
- Modular control maintained acceptable emissions and dynamics levels throughout event
Summary

- Regional trends, design/operational constraints and fuel availability will continue to drive the power generation industry towards non-traditional fuels.

- Gas turbines have demonstrated capability to operate on a wide variety gaseous and liquid fuels.

- GE has successfully tested/operated many of these fuels and decreased OpEx and CapEx impacts to the heavy duty gas turbine ... goal is for performance like it is operating on natural gas.

Powering the World Responsibly
Thank You. Questions?
imagination at work